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[1] The submarine Amsterdam-St. Paul (ASP) Plateau, bisected by the Southeast Indian Ridge (SEIR), is a
bathymetric high rising ~2 km above the surrounding seafloor that includes the islands of Amsterdam and
St. Paul; this excess volcanism is attributed to a mantle hot spot. We obtained new Sr, Nd, and Pb (n=37) and
He isotopic (n = 10) ratios for basalt glasses from 11 SEIR segments on and adjacent to the plateau and from
three seamounts on the plateau. The results show systematic spatial variations in these isotopic ratios that
correlate with physical segmentation of the ridge. Specifically, lavas from the four ridge segments on the ASP
Plateau have higher °*Pb/°**Pb at a given 206Pb/***Pb than SEIR basalts distant from ASP Plateau.
Surprisingly, lavas from the ridge segment 100 km north of the ASP Plateau are distinguished by the most
radiogenic 2°°Pb/2**Pb (up to 19.4) and highest *He/*He ratios (up to 14.1 R,). These are characteristics of
lavas erupted at Amsterdam and St Paul Islands. The isotopic data for SEIR basalts erupted on or adjacent to the
ASP Plateau provide equivocal evidence for a mantle component derived from the distant Kerguelen hot spot.
Overall, the Pb-Nd-Sr-He isotope variations within this data set are explained well by three mantle end-
members: (1) depleted mantle having relatively low *°°Pb/***Pb and *’St/*®Sr and high '**Nd/'**Nd, which has
been variably mixed with (2) material having relatively high ***Pb/***Pb and *’St/*°Sr and low '**Nd/'**Nd, a
signature commonly ascribed to detached or eroded metasomatized continental lithosphere, and (3) hot spot—
related mantle having elevated *He/*He and *°°Pb/***Pb but intermediate *’St/*°Sr and '**Nd/'**Nd, similar to
the common or C material observed in hot spots globally. These results suggest either that the ASP hot spot is
isotopically heterogeneous or that the shallow mantle or lithosphere beneath the ASP Plateau contains more
continentally derived material than the SEIR mantle >500 km away. Perhaps, like the 39°—41°E section of the
Southwest Indian Ridge, beneath the ASP Plateau there are rafts of continental material stranded within a local
“tectonic corridor,” possibly present since the opening of the Indian Ocean basin.
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1. Introduction

[2] Numerous studies have investigated the inter-
action between mid-ocean ridges and nearby hot
spots using geochemical data [e.g., Schilling, 1985;
Schilling et al., 1985; Dosso et al., 1999; Douglass
et al., 1999; Maia et al., 2001; Detrick et al., 2002;
Kingsley et al., 2007]. Recent work has empha-
sized the importance of understanding how mantle
heterogeneity, mantle flow direction and magma
flux modulate the geochemical signals observed
along ridge axes during hot spot—ridge interaction
[e.g., Ito et al., 2003; Blichert-Toft et al., 2005].
Isotopic ratios of Pb, Sr, Nd and He are particularly
useful for studying the evolutionary history of hot
spot—ridge interactions because these ratios in mid-
ocean ridge basalt (MORB) distant from hot spots
differ significantly from the same ratios in hot spot—
related, ocean island basalt (OIB) [e.g., Hofmann,
2004].

[3] The Southeast Indian Ridge (SEIR) is the
longest spreading axis in the Indian Ocean, stretch-
ing from the Indian Ocean Triple Junction (25.6°S,
70°E) through the Australian—Antarctic Discor-
dance (50°S, 120°E) to the Macquarie Triple Junc-
tion in the southwest Pacific Ocean at ~62°S,
160°E (Figure 1). This ridge has interacted during
the last 40 million years with two hot spots,
Kerguelen and Amsterdam/St. Paul [e.g., Doucet
et al., 2004]. Parts of the SEIR migrated over the
Kerguelen hot spot, currently represented by the
Kerguelen Archipelago and Heard and McDonald
Islands, at about 40 Ma when Broken Ridge was
separated from the Kerguelen Plateau (Figure 1)
[Mutter and Cande, 1983; Tikku and Cande, 2000].
Presently the SEIR bisects the Amsterdam-St. Paul
(ASP) Plateau (Figures 1 and 2). On the basis of
isotopic data for the two islands on the ASP
Plateau, Amsterdam and St. Paul, the isotopic

characteristics of the ASP hot spot vary with
location [Doucet et al., 2004]; therefore basalt from
specific SEIR segments on or adjacent to the ASP
Plateau may be isotopically distinct.

[4] The Boomerang 06 cruise of the R/V Melville
mapped ~1630 km of the SEIR and sampled (by
dredging and wax coring) 11 ridge segments, with
nearly one sampling site per 10 km of ridge on the
plateau and one per 14 km from ridge segments
adjacent to the plateau [Graham et al., 1999]. This
study presents Sr, Nd and Pb isotopic ratios for
37 basalt glasses recovered from the Southeast
Indian Ridge between 32°S, 77°E and 43°S, 88°E
and from the ASP Plateau (Figure 2). Also, we
present new He isotopic data for 10 samples to
complement the existing database (n =41 [Graham
et al., 1999; Burnard et al., 2002]). A major result
is that each ridge segment, or in some cases
contiguous segments, has distinctive isotopic char-
acteristics. Comparisons of our isotopic data with
previous results for Amsterdam and St. Paul
Islands [Doucet et al., 2004] reveal that the ASP
hot spot exerts considerable influence on the sub-
ridge mantle for a lateral distance of ~300 km.
Specifically, isotopic characteristics associated
with mantle plumes, such as high *He/*He, occur
on the ASP Plateau and along the axial ridge
segment immediately north of the plateau, whereas
a low 2°°Pb/***Pb and relatively high *°*Pb/*°°Pb
isotopic signature is restricted to the plateau.

2. Geologic Setting

[s] Spreading along the central and eastern SEIR
initiated approximately 83 million years ago fol-
lowing ~13 million years of crustal extension
between East Antarctica and southern Australia
[Cande and Mutter, 1982; Veevers, 1986; Powell
et al., 1988]. The earliest identified magnetic
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Map of the eastern Indian Ocean showing the Southeast Indian Ridge (SEIR) and the Kerguelen Plateau.

Ninetyeast and Broken Ridges formed a contiguous part of the Kerguelen Plateau until the northwest propagating
SEIR intersected the plateau at ~40.1 Ma [Tikku and Cande, 2000; Cande and Kent, 1995]. The Amsterdam-St. Paul
(ASP) Plateau is located on the northwestern margin of a prominent U-shaped curve in the Southeast Indian Ridge.

anomaly is C34 (~83 Ma) [Cande and Kent, 1995],
and the initial spreading rate was slow, ~5 mm/yr
[Cande and Mutter, 1982; Mutter et al., 1985].
Approximately 40 million years ago the spreading
rate increased to ~22 mm/yr and the SEIR inter-
sected and split Broken Ridge from the Kerguelen
Plateau [e.g., McKenzie and Sclater, 1971; Tikku
and Cande, 2000]. Presently the SEIR is ~1150 km
northeast of the Kerguelen Plateau (Figure 1). The
full spreading rate is 63 to 65.5 mm/yr near the ASP
Plateau [Conder et al., 2000] and 70—75 mm/yr
southeast of 88°E [Sempéré and Cochran, 1997].
Because the Antarctic plate moves relatively slowly
in the hot spot reference frame, the ridge is migrating
northeastward at a rate of ~32 mm/yr [Conder et al.,
2000]. The 11 ridge segments between 77° and 88°E
(Figure 2) that are the focus of this study are
designated F through L using the nomenclature of
Royer and Schlich [1988] and Scheirer et al.
[2000].

[6] From ~77° to 79°E, the SEIR has a prominent
U-shaped bend convex to the southwest (Figures 1
and 2), and this geometry has persisted since a
ridge jump toward the Kerguelen hot spot shortly
after the ridge propagated through the Kerguelen
Plateau at ~40 Ma [Miiller et al., 1998]. The ASP

Plateau on the western limb of the U-shaped offset is
an ~30,000 km? area of shallow bathymetry, <2300 m
water depth, rising ~2 km above the surrounding
seafloor (Figure 3a). Between segments H and 11,
the Amsterdam transform fault defines the northern
margin of the plateau (Figure 2), whereas the south-
ernmost ridge segments on the plateau (J1 and J2)
are overlapping strands that show a gradual change
to greater water depths on the southern margin
(Figure 3a) [Scheirer et al., 2000].

[7] The plateau includes the volcanic islands of St.
Paul and Amsterdam [Doucet et al., 2004] and
several seamounts, including St. Pierre and Boo-
merang Seamount (Figure 2). Hot spot volcanism
of the ASP Plateau initiated less than 5 million
years ago on the basis of the age of seafloor
surrounding the plateau [Scheirer et al., 2000].
Subaerial lavas from Amsterdam are less than
0.7 Ma [Gunn et al., 1971] although the most
recent paleomagnetic and argon geochronology
suggests ages of 26 = 15 and 18 £ 9 kyr [Carvallo
et al., 2003]. The breached caldera of St. Paul is
morphologically young and is most likely less than
0.5 Ma [ Watkins et al., 1974]. The islands are ~100
and 60 km, respectively, from the nearest ridge
segments and St. Pierre seamount is just east of St.
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Figure 2. Detailed view of the SEIR study region. This map combines satellite gravity data [Sandwell and Smith,
1997] with Seabeam bathymetry obtained during the BMRG 06 cruise. Warmer colors (brown) indicate the shallow
bathymetry of the ASP Plateau [Scheirer et al., 2000]; deeper seafloor is blue to purple. The segment labels (F—L)
use the nomenclature based on that of Royer and Schlich [1988] and Conder et al. [2000]; sample locations are

indicated (see legend).

Paul Island. Boomerang Seamount, a currently
active volcano [Johnson et al., 2000], is ~10 km
northwest of segment 12 and 18 km northeast of
Amsterdam Island (Figure 2). In the region of
the islands, there is a prominent negative mantle
Bouguer gravity anomaly centered to the west of the
ridge, interpreted as increased crustal thickness
beneath the plateau [Scheirer et al., 2000, Figure 9].

[8] The four ridge segments (11, 12, J1, J2) located
on the plateau show en echelon segmentation
(Figure 2), oblique spreading and a propagating
rift (segment J2) to the south [Conder et al., 2000;
Scheirer et al., 2000]. Ridge segments 11 and 12
jumped southwestward toward the ASP hot spot
approximately 0.70 and 0.58 million years ago,
respectively [Conder et al., 2000]. Scheirer et al.
[2000] suggested that the intersection of the SEIR
and the ASP Plateau initially occurred between 5
and 3.5 million years ago. Using an inferred crustal

thickness of 13 km based on gravity analy51s
[Scheirer et al., 2000] and the 30,000 km? area
of the plateau, the magmatic flux of the ASP hot
spot has been estimated to be between 0.05 and
0.1 km*/yr during the last 3.5 million years; the
lower flux does not include production of normal
oceanic crust at the ridge axis. For comparison, the
magmatic flux during the 24 to 30 Ma eruptions of
the flood basalt forming the Kerguelen Archipelago
is estimated to have been between 0.009 and
0.42 km?*/yr [Nicolaysen et al., 2000].

3. Previous Studies

[s] Early geochemical studies focused on dredged
basalts from the SEIR between the Indian Ocean
Triple Junction and the ASP Plateau. Hamelin et al.
[1985/1986], Michard et al. [1986], and Dosso et
al. [1988] documented anomalous isotopic compo-
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Figure 3. Along-axis profiles of (a) seafloor depth, (b) K,O/TiO,, and (c) *He/*He (R/R ). Distance along-axis is
represented as north (to the left) and southeast (to the right) of St. Paul Island calculated through the pole of plate
rotation. Dashed lines indicate the boundaries between ridge segments. The shallow bathymetry of the ASP Plateau
(segments 11, 12, J1, and J2) is indicated by pale orange shading and coincides with relatively high K,O/TiO, and
*He/*He, but the highest ratios in these parameters occur along segment H north of the plateau [Douglas-Priebe,
1998; Graham et al., 1999]. Data sources include analyses of SEIR basalts and ASP seamounts by Dosso et al.
[1988], Graham et al. [1999], Johnson et al. [2000], and this study; analyses of Amsterdam and St. Paul Island lavas

are from Doucet et al. [2004].

sitions, which they inferred to be Kerguelen-like, in
SEIR basalts dredged in the vicinity of segments J1
and J2 (Figure 2). In 1996, the Boomerang 06
expedition of the R/V Melville surveyed and sam-
pled SEIR segments on and adjacent to the ASP
Plateau with the goal of assessing the influence of
the Amsterdam-St. Paul and Kerguelen hot spots
on SEIR MORB. Conder et al. [2000] and Scheirer
et al. [2000] published the geophysical results from
this cruise. Graham et al. [1999] showed that SEIR
basalts atop the plateau and from segment H north of
the plateau have high *He/*He ratios, up to 14 Ry
(where R, is the atmospheric ratio), and inferred

that hot spot—derived mantle was flowing toward
the north. Johnson et al. [2000] described the
morphology and chemistry of Boomerang Sea-
mount (Figure 2). A hydrothermal plume discovered
in the water column at this locality, *'°Po-2'°Pb data
for the seamount basalts, and the presence of fresh
hydrothermal sediment provide evidence that Boo-
merang Seamount represents a currently active
expression of the ASP hot spot.

[10] On the basis of major element data for more
than 300 glasses from 89 dredge and wax core
sites, Douglas-Priebe [1998] defined a large num-
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ber of distinct compositional groups. In general,
MORBSs that are relatively enriched in K and
incompatible trace elements (Table 1) occur atop
the ASP Plateau and along the ridge segment north
of the plateau (segment H; Figure 3b). Additionally,
basalts from ridge segments on the plateau extend
to lower Mg# (100 Mg/(Mg + Fe)) than basalts
from ‘“normal” ridge segments to the north and
south of the plateau (on plateau: 46.5—60.6 Mg#;
off-plateau: 55.9-66 Mg#), indicating greater
amounts of low-pressure crystal fractionation
(Table 1). Although the thickened oceanic crust
of the ASP Plateau has led to a greater extent of
crystal fractionation, this process cannot explain
the K/Ti variation that is accompanied by variable
He isotopic ratios [Graham et al., 1999, Figures 3b,
3¢, and 2]. Using major and trace element abundance
variations and helium isotopic ratios (Figure 3),
Douglas-Priebe [1998], Graham et al. [1999], and
Johnson et al. [2000] identified two distinct mantle
sources for the SEIR basalts between 77° and 88°E.

[11] Burnard et al. [2002] demonstrated, however,
that the degree of crystal fractionation and the
associated extent of pre-eruptive degassing both
control noble gas concentrations in the study region,
thereby exerting an influence on the *He/*He signal
for mixtures of MORB and hot spot magma. Pre-
and syn-eruptive degassing has clearly affected the
noble gas concentrations in these basalts (as well as
nearly all MORB). The He concentrations cannot be
taken as unmodified magmatic values, and the
extent of gas loss may affect the sense of the
curvature in inferred mixing relationships on dia-
grams where *He/*He variations are compared to
those of the lithophile isotope tracers. However,
only the very degassed samples, i.e., those having
He concentrations below 10™% ccSTP/g and low
*He/*He (1-2 R,), appear to have been affected by
shallow level (assimilation) processes [Graham et
al., 1999]. These low *He/*He lavas are typically
sampled in areas where the magma budget is less
robust, such as near 4propagating rift tips or trans-
form faults. The *He/*He variations discussed in this
study exclude the highly degassed lavas and are
therefore taken to reflect variations in the underlying
mantle source region of the basalts.

4. Sampling and Analytical Techniques

[12] On the basis of major element compositions
[Douglas-Priebe, 1998] and helium isotopic data
[Graham et al., 1999], we selected a subset of
basalt glass samples for Pb, Nd and Sr isotopic
analysis. These samples are from 35 axial sites on

the 11 ridge segments. Additional samples include
a basalt from a short extensional relay zone within
the Zeewolf transform north of segment H (D75-4),
a basalt from a small (150 m high) off-axis volca-
nic cone on the plateau (D58-1), and three basalts
from seamounts on the ASP Plateau (WC44 and
WC45 from Boomerang Seamount, and WC34
from a small lava field near the base of St. Pierre
Seamount). A single glassy sill sampled on St. Paul
Island (SP-1a) was also analyzed. For each sample
approximately 50 mg of fresh glass fragments were
picked under a binocular microscope. These frag-
ments were cleaned ultrasonically with methanol,
4 N HCI, and ultra-pure distilled water, dried and
then weighed prior to analysis at the University of
Hawaii. Sample dissolution in HF-HNO; was fol-
lowed by separation of Pb, Sr, and Nd by anion and
cation exchange chromatography, and isotopic anal-
yses following procedures described by Mahoney et
al. [1994]. Helium isotopic analyses followed pro-
cedures outlined by Graham et al. [1999].

5. Results

[13] Sample locations, water depths, Mg#, K,O/TiO,
and Pb, Nd and Sr isotopic data are in Table 1; new
He isotopic data (n = 10) are in Table 2. The isotopic
data are examined in this study by separating the
samples into three spatial groups: ridge segments (11,
12,71, J2) and seamounts located on the ASP Plateau;
ridge segments J3, J4, K and L southeast of the
plateau; and ridge segments H, G and F north of
the plateau (Figures 3 and 4).

[14] Basalts from the seamounts and segments on
the ASP Plateau range widely in *He/*He, from 8.6
to 13.4 R, (Figure 3c). These lavas also have a
wide range of Pb, Nd and Sr isotopic ratios, and
this variability is clearly related to ridge segmen-
tation (Figure 4). For example, samples from
se;ment J1 range to the highest ®’Sr/*°Sr, lowest
"SNd/MNd, lowest 2°°Pb/204Pb and the highest
208pp*296pp* (as defined in the Figure 4 caption);
in contrast, samples from segment 12 have the
highest 2°°Pb/2**Pb atop the plateau.

[15] Surprisingly, the isotopic compositions of
lavas from axial segments on the ASP Plateau
range to higher ®’Sr/*°Sr, lower '**Nd/'**Nd and
higher 2°*Pb*/2°°Pb* than basalts from Amsterdam
or St. Paul Islands (Figure 4). The two seamounts
that were sampled atop the plateau also have
different isotopic signatures. A presumably young
flow at the terminus of a volcanic cone field
northeast of the base of St. Pierre Seamount was
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Table 2. New Helium Isotope Data for SEIR Basalt

Glasses”

Ridge *He/*He [He],
Sample Segment (R/RA) + uecSTP/g
D51-1 12 8.93 0.06 0.394
D59-1 J1 11.89 0.08 0.614
WC35 12 10.27 0.06 0.888
WC37 12 12.21 0.08 0.113
WC38 12 11.34 0.06 0.57
D66-1 12 9.67 0.07 0.375
D67-1 12 9.86 0.13 0.0816
D73-4 H 10.35 0.06 2.12
D76-5 F 8.5 0.04 6.8
D77-3 F 8.57 0.05 2.8

?Gas extractions were performed by in vacuo crushing of hand-
picked basalt glass. Reported uncertainties represent the 2 standard
error quadrature sum of uncertainties associated with sample, blank,
and air standard analyses.

targeted for sampling because of its high reflectivity
in side-scan sonar. Sample WC34 from this area,
~30 km southeast of St. Paul Island (Figure 2), has
the highest *He/*He (13.4 Ry) of the samples from
the plateau. WC34 also has relatively high *’Sr/*°Sr
(0.70478), low '**Nd/'**Nd (0.51266) and elevated
208pys/206pys (1.03), similar to the extreme values
observed on nearby segment J1. Basaltic glasses
WC44 and WC45, two wax cores from the floor
and rim, respectively, of the summit caldera of
Boomerang Seamount (Figure 2), have markedly
different isotopic comé)ositions (®7Sr/*°Sr =
0.70456 and 0.70381; *°Pb/***Pb = 18.55 and
19.14, respectively).

[16] Southeast of the ASP Plateau, ridge segments
J3, J4, K and L have 87Sr/%6Sr values that range
from 0.70297 to 0.70367 and '**Nd/***Nd values
from 0.51289 to 0.51307 (eng = 4.9 to 8.4), but no
systematic increase in °’Sr/*°Sr or decrease in
"3Nd/'"**Nd is observed approaching the ASP
Plateau. Rather, samples from segment J3 closest
to the ASP Plateau have the lowest *’Sr/*®Sr and
highest '**Nd/"**Nd (Figure 4). In contrast, slightly
more radiogenic 2°°Pb/***Pb ratios are observed
along segment J3.

[17] North of the ASP Plateau, segment H lavas are
isotopically diverse, having ®’Sr/36Sr = 0.70306 to
0.70368, "*Nd/"**Nd = 0.51284 to 0.51304, and
206pp/29%Ph = 18.11 to 19.41 (n = 6; Table 1). The
highest *He/*He (14.1 R,) and most radiogenic
205pp/204pp (19.41) are found in sample WCA47,
near the center of segment H (Figures 3 and 4).
However, *’St/*°Sr and '**Nd/'**Nd ratios along
segment H do not reach the extreme values ob-
served along axial segments on the ASP plateau.

Also, there is no simple relation along segment H
between isotopic compositions and distance from
the plateau, partly because one dredge site (D73)
on segment H recovered lavas with highly variable
isotopic compositions (Table 1).

[18] Basalt D75-4, recovered along a small exten-
sional relay zone within the Zeewolf transform
between segments G and H), has lower 87Sr/8sr,
206,207.208p, 204py, and 3He/*He, and higher
"Nd/"*Nd, than any of the segment H lavas
(Figures 3 and 4). Relative to basalt from segment
F to the northwest, segment G basalts have similar
Nd and Sr isotopic ratios but higher 2°°Pb/***Pb
ratios (Figure 4).

6. Discussion

6.1. Islands, Seamounts, and Ridge
Segments (I1, 12, J1, J2) on the ASP Plateau

[19] Lavas from Amsterdam and St. Paul Islands
on the ASP Plateau define ®’Sr/*°Sr versus
"SNd/"*Nd fields that are intermediate between
MORB glasses from the SEIR and lavas from the
Kerguelen Archipelago (Figure 5). Lavas from
Amsterdam and St. Paul Islands have more radio-
genic Pb isotopic ratios than SEIR MORB
(Figure 6), and these ratios in Amsterdam Island
lavas (e.g., 2°°Pb/**Pb ~19.1 [Doucet et al.,
2004]) exceed those for lavas from the Kerguelen
Archipelago (Figure 6). Notably, lavas from
Amsterdam and St. Paul Islands define restricted
and distinct fields in radiogenic isotopic ratios,
especially in Pb isotopic ratios (Figures 5 and 6).
Samples from Boomerang and St. Pierre Sea-
mounts provide additional evidence for ASP hot
spot isotopic variability. Specifically, data for a
sample from the caldera floor of Boomerang Sea-
mount (WC44) falls within the Pb-Nd-Sr isotopic
range of nearby Amsterdam Island lavas, but a
sample from the caldera rim (WC45) has hi§her
$7Sr/*Sr, lower 'Nd/'"**Nd, lower *°°Pb/***Pb
and higher 2°*Pb*/*°°Pb* than the range of lavas
from Amsterdam Island (Figure 4). Also, a sample
(WC34) from near St. Pierre Seamount, just south
of St. Paul Island, has higher ®’Sr/*°Sr, lower
"SINA/!Nd, Tower 2°°Pb/2°*Pb and higher
208pp*296ph* than the range of lavas from St. Paul
Island (Figure 4). Clearly, the ASP hot spot erupts
lavas having a wide range of isotopic composi-
tions, and this range is expressed in the youngest
seamount volcanism on the plateau as well as by
the <1 Ma island lavas [Graham et al., 1999;
Johnson et al., 2000; Doucet et al., 2004].
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Figure 4. Along-axis variations in (a) *’Sr/*°Sr, (b) "*Nd/"*Nd, (c) 2*°Pb/?**Pb, and (d) *°*Pb*/**°Pb*. The
influence of the Amsterdam-St. Paul hot spot upon SEIR basalts is evident by the deviations in isotopic ratios relative
to normal mid-ocean ridge basalts north (segments F and G) and southeast (segments K and L) of the plateau. Note
that the highest Pb isotopic compositions, like the *He/*He shown in Figure 3, occur off the plateau at segment H. In
contrast, Sr and Nd isotopes show maxima and minima, respectively, on the plateau. We use the parameter
208pp*/29pp* for ASP and SEIR lavas because it can be related to the history of Th/U fractionation. 2**Pb*/2°Pb* is
a measure of the cumulative radiogenic Pb in a sample corrected for the presence of terrestrial primordial Pb
CO®Pb*/*2°Pb* = [***Pb/***Pbampie—29.4751[**°Pb/***Pbampic—9.307]) [Allégre et al., 1986; Galer and O’Nions,
1985]. Data sources are as in Figure 3, with additional data from Hamelin et al. [1985/1986], Michard et al. [1986],
Price et al. [1986], and Dupré and Allegre [1983].

[20] Axial segments I1, 12, J1 and J2 are on the
bathymetric high forming the ASP Plateau (Figures 2
and 3a); their negative mantle Bouguer gravity
anomalies indicate that the plateau has thickened
crust [Scheirer et al., 2000]. Do the isotopic ratios

of lavas from these ridge segments reflect a strong
influence from the ASP hot spot? The sample from
the base of St. Pierre Seamount has the highest
*He/*He (13.4 Ry); together with SEIR samples
from the nearby ridge segments 12 and J1, a local
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Figure 5. Nd/"""Nd versus °'Sr/°”Sr. SEIR basalts

away from the ASP Plateau (segments F, G, K, and L)
have the most radiogenic Nd and least radiogenic Sr
isotopic compositions in the study region. Data for
Kerguelen Archipelago are from Weis et al. [1998],
Yang et al. [1998], Frey et al. [2000], Doucet et al.
[2002], and Frey et al. [2002b]. Data for Heard Island
are from Barling and Goldstein [1990].

high in *He/*He is defined (Figure 3c). These ratios
are higher than observed in SEIR basalt distant
from the plateau [Graham et al., 2001]. Surpris-
ingly, lavas from se§ment J1 range to higher
87Sr/*°Sr and lower '"Nd/"**Nd than lavas from
Amsterdam and St Paul Islands (Figures 4 and 5).
Earlier studies of samples dredged from segment J1
[Hamelin et al., 1985/1986; Michard et al., 1986;
Dosso et al., 1988] found similar results, and these
authors speculated that material derived from the
distant Kerguelen hot spot was actively involved in
construction of the ASP Plateau. However, new
isotopic data show that two of the three samples
from Boomerang and St. Pierre Seamounts, which
are clearly linked to the excess magmatism of the
ASP hot spot, also have relatively high *’Sr/*°Sr
and low '"*Nd/'**Nd (Figure 5). This isotopic
signature, previously inferred to implicate involve-
ment of the distant Kerguelen hot spot, occurs in
the youngest volcanism atop the plateau [Johnson
et al., 2000] and therefore seems intrinsically
associated with the ASP hot spot.

[21] Confirmation of the ASP hot spot influence on
axial ridge lavas erupted on the plateau is clearly
seen in the Pb isotopic data. In the ***Pb/***Pb
versus 2*°Pb/?**Pb plot (Figure 6a), basalts from
ASP segments J1, J2, I1 and 12, along with lavas
from Amsterdam Island, Boomerang Seamount
and St. Pierre Seamount, define a trend with
relatively high 2°*Pb/***Pb for a given *°°Pb/***Pb.
These lavas have high °*Pb*/>°°Pb* (Figure 4d), a

characteristic of the DUPAL anomaly, a wide,
nearly global swath of isotopically distinct ocean
island basalts centered at ~30°S. Hart [1984]
defined this isotopic anomaly on the basis of
deviation from a ‘“northern hemisphere reference
line” in Pb-Pb isotopic ratio diagrams and relatively
high Sr isotopic ratios (>0.705). Among SEIR
basalts on the plateau, the J1 segment lavas range
to more extreme “**Pb*/?°°Pb* ratios (>1.05) than
lavas from Amsterdam and St. Paul Island, and two
of the three seamount samples also have higher
208pp*296phy* than island lavas (Figure 4d).

[22] In summary, lavas associated with the ASP hot
spot show significant isotopic variability. Although
isotopic heterogeneity was previously established
by inter-island differences between St Paul and
Amsterdam lavas [Doucet et al., 2004], even more
isotopic diversity is shown by nearby seamounts
and the SEIR segments on the ASP Plateau.

6.2. Ridge Segments (H, G, F) North of the
ASP Plateau

[23] Segment H lavas define near-linear trends
in isotopic ratio plots such as ®’Sr/*°Sr versus
MONd/MNG, 22°Pb/2%*Ph versus 2°°Pb/**Pb,
M3Nd/'**Nd versus 2°°Pb/2**Pb and ¥'Sr/*°Sr ver-
sus 2°Pb/***Pb (Figures 5—7); these trends are
consistent with mixing of two isotopicallgl distinct
end-members. The 208Pb/2**Pb versus 2°°Pb/2**Pb
diagram (Figure 6a) provides the best illustration of
mixing because the relative errors are small and
mixing trends show little scatter. Segment H sam-
ples also show a linear relationship in *He/*He
versus ©/Sr/*°Sr (Figure 8). If mixing between two
end-members is the dominant process responsible
for the isotopic variation of segment H lavas, the
linearity of the isotopic trends requires that St/Nd,
St/Pb and Sr/He abundance ratios are similar in
both end-members.

[24] Along segment H there is no observed sys-
tematic relationship between isotopic ratios and
distance to the islands (Figure 4). The large vari-
ation in geochemical characteristics occurs over
distances much less than the ~90 km length of
segment H. This variation probably occurs at the
scale of lava flows, because a single dredge haul
(D73) exhibits between 65 and 85% of the total
variability in He-Pb-Nd-Sr isotopic ratios along
segment H (Table 1). Therefore mixing proportions
between the two end-members appear to be vari-
able at a scale of kilometers or less along segment H.
Moreover, the isotopic extremes along segment H
are defined by samples collected only 18 km from
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